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In this work we study the magnetic behavior of a simple model of the stripe ordered phase of the cuprates,
an array of alternating coupled doped and undoped two-leg Hubbard-type ladders. To obtain the coupled
ladders’ magnetic response, we employ available dynamical susceptibilities of the individual two-leg ladders
and treat the interladder coupling in a random phase approximation. Strikingly, we find two possible scenarios
for the ordered state induced by the coupling between ladders: the spin modulation may both occur in the
conventional fashion, perpendicular to the direction of the stripes, but it may also occur parallel to the stripe
direction. These two scenarios are differentiated according to different microscopic realizations of the compo-
nent doped ladders. We argue that inelastic neutron scattering experiments on two stripe ordered cuprates,
La1.875Ba0.125CuO4 and La2−xSrxCuO4 at x�0.125, do not readily distinguish between these scenarios due to
manner in which stripes form in these materials.
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La2−xBaxCuO4 is the material where high-temperature su-
perconductivity was first discovered by Bednorz and Müller
in 1986.1 At x=0.125 this material is defined by an anoma-
lous suppression of Tc,

2 which has been argued3–5 to be co-
incident with static stripe order, a unidirectional static charge
and spin density wave. While there exist other cuprates ex-
hibiting static stripe order, the most prominent being
neodymium-doped La1.6−xNd0.4SrxCuO4 �LSCO�,6 there ex-
ists a wider class of allied compounds possessing “dynamic
stripes,” a phenomenon characterized by short-range charge-
density wave �CDW� order and incommensurate low- �but
finite� energy magnetic excitations. While their presence or
absence in any given material is controversial, dynamic
stripes can be argued to be seen in both YBa2Cu3O6+x �Refs.
7–11� and in La2−xSrxCuO4.12,13

Magnetic order associated with the stripe phase appears in
two different guises in these copper oxides. In neutron mea-
surements on untwinned crystals of YBa2Cu3O6.6 exactly two
incommensurate low-energy peaks are seen.8,9 Observations
of the phonon anomaly in this material are contradictory,
with initial measurements suggesting that the magnetic peaks
are displaced from the wave vector �� ,�� along a direction
perpendicular to the stripes,14 while later measurements of
the same anomaly15 arguing the displacement is parallel
to the stripes. The origin of magnetic order in
La1.875Ba0.125CuO4 and La2−xSrxCuO4 is similarly ambiguous
but for different reasons. In these materials, four peaks in the
neutron scattering intensity are observed. This doubling in
the number of peaks corresponds to a doubling of the unit
cell in the La-based materials. Each cell spans two copper-
oxide planes where the stripes in each plane are orientated at
90° relative to one another. This doubling obscures the rela-
tive orientation of the magnetic relative to the charge order.
In La1.875Ba0.125CuO4 this doubling occurs as part of its LTT
structure, while in La2−xSrxCuO4 the doubling can only be
dynamically present in its corresponding LTO structure.

Despite this ambiguity, it is widely believed, based upon
the observed charge incommensuration as a function of dop-
ing, x, that magnetic order arises perpendicular to the charge
stripe order. However, as we will argue, this evidence is not

dispositive, at least for x�1 /8. Synonymously, we will also
demonstrate that the ordering is not theoretically constrained.
To this end we present a model where magnetic ordering
may arise equally naturally perpendicular or parallel to the
stripe direction.

The model we study, originally suggested for x=1 /8
doped LBCO by Tranquada et al.,4 begins by treating a
single copper-oxide plane as an array of coupled two-leg
Hubbard-type ladders, where the unit cell contains one un-
doped �U� and one doped �D� two-leg ladder. In the model it
is the presence of the doped two-leg ladders that permits two
scenarios for magnetic ordering to arise. One scenario is fa-
vored over the other on the basis of particular nonuniversal
features in the spin response of an individual doped ladder.16

This nonuniversality then implies that at least in the context
of our model, one scenario is not fundamentally more natural
than the other.

An important ancillary consequence that flows from our
model is a natural explanation for the � phase shift concomi-
tant with the incommensurate magnetic order. In models
where the doped striped regions are treated as magnetically
inert voids,17–19 the undoped parts of the copper-oxide plane
are connected via effective ferromagnetic couplings so that
the correct incommensurate order is produced. Instead here,
we show that a model of antiferromagnetically connected
doped and undoped ladders is able to produce the �-phase
shift.

A fundamental assumption underlying the model we are
analyzing is that stripes are not merely a low-energy phe-
nomenon but rather exist over a large range of energies. Sup-
port for this view may be derived from inelastic neutron
scattering experiments,4,20,21 where a strong inelastic signal
between 50 and 100 meV has been attributed to arise from
stripe correlations. However, it is not yet fully understood
�but see Refs. 22–25� how to reconcile such a stripe-based
picture with the existence of nodal quasiparticles established
in angle-resolved photoemission data.26 And while stripe cor-
relations may exist at higher energies, they are certainly not
isolated phenomena. Typically, higher energy inelastic neu-
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tron scattering observations4,21 only see broad features, indi-
cating at the least, strong damping.

While our model pertains primarily to magnetic order
at 1/8 doping, where the incommensurate ordering wave
vector approximately3 equals Qs=��1�1 /4,1� or Qs
=��1,1�1 /4�, it is also capable of describing other values
of incommensuration. In the second scenario of ordering pre-
sented below, the incommensuration results from the position
of the low-lying quasicoherent mode on the doped ladder,
which is itself a linear function of doping. While this re-
quires the assumption that that doping adds holes to the
stripe without changing the distance between stripes, it is
perhaps a useful step toward a description of the striped
phase in La2−xSrxCuO4 for 0.055�x�0.125, where parallel
stripe order appears with incommensuration linear in x.

While we do not address directly the origin of supercon-
ductivity, a particularly attractive feature of this model is that
superconductivity arises naturally from the strong pairing
correlations present in doped ladders.27–30 In order to judge
the applicability of such a model it is first important to ana-
lyze its implications for the magnetic dynamics of the striped
phase. This is the aim of the present paper.

I. MODEL

The basic model underlying our calculations is illustrated
in Fig. 1: we have an array of alternating doped and undoped
Hubbard-type ladders.31 The charge gap in the undoped lad-
ders is taken to be large. As a result the dominant interaction
between ladders is antiferromagnetic superexchange Jc. As is
clear from the above discussion, the experimentally observed
charge order with approximate commensurate wave
vector3,32

Qc = �0, �
�

2
� �1�

is built into our model. The issue we want to address is the
static spin order that develops upon coupling the ladders to-
gether, as well as the spin dynamics. While it is widely be-
lieved that magnetic long-range order develops at

Qs = ��,� �
�

4
� , �2�

that is, perpendicular to the stripes, we want to suggest an
alternative scenario where the magnetic long-range order de-
velops along the direction of the stripes, i.e.,

Qs = �� �
�

4
,�� . �3�

The two scenarios are illustrated in Fig. 2.

II. ANALYSIS OF THE MAGNETIC RESPONSE

The basic ingredients of our approach are dynamical sus-
ceptibilities of the two types of ladders. As our subsequent
analysis is based on a random phase approximation �RPA� in
the interladder couplings, this is the only information re-
quired. It turns out that the results obtained in such an ap-
proach display a certain robustness with respect to changing
the microscopic details of the model. This allows us to iden-
tify prominent features of the magnetic response, which we
believe to be insensitive of the particular approximations we
employ.

The dominant interladder coupling is taken to be antifer-
romagnetic superexchange of strength Jc �see Fig. 1�, which
is induced by virtual hopping processes between doped and
undoped ladders. The matrix susceptibilities for the U and D
ladders are expressed in terms of the matrices

MU��,qx,qy� = � �11
ud��,qx� eiqya�12

ud��,qx�
e−iqya�21

ud��,qx� �22
ud��,qx�

� ,

MD��,qx,qy� = � �11
d ��,qx� eiqya�12

d ��,qx�
e−iqya�21

d ��,qx� �22
d ��,qx� .

� , �4�

via

�a�qx,qy,�� = Tr Ma · K, a = U,D, �5�

where K is defined by

K = �1 1

1 1
� . �6�

Here �11=�22 marks correlations along the legs of the ladder,
while �12=�21 describes correlations of the ladder rungs.

y

J J Jc c c

undoped 3/8 filled

. . . . . . . .

x

FIG. 1. �Color online� A schematic of an alternating infinite
array of coupled half-filled and doped ladders. We take the coupling
Jc to be antiferromagnetic.
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FIG. 2. �Color online� Two possible scenarios for magnetic and
charge long-range order in the coupled ladder model. The wave
vectors are marked in units of 2�.
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The coupling between the ladders is then taken into ac-
count in RPA. In the matrix notation introduced above this
amounts to

�2D
RPA��,qx,qy� = Tr��1 + MDJ�MU�1 − JMDJMU�−1K�

+ Tr��1 + MUJ�MD�1 − JMUJMD�−1K� , �7�

where J is a matrix given by

J = � 0 e−iqyaJc

eiqyaJc 0
� . �8�

The scattering function for the coupled ladders is then
S�qx ,qy ,���−Im �2D

RPA�� ,qx ,qy�.
Long-range magnetic ordering occurs when �2D��

=0,qx ,qy� develops a singularity at some Qx and Qy. In the
RPA the development of the singularity is equivalent to the
vanishing of Det�1−JMUJMD�, which gives

0 = �1 − Jc
2�11

d �11
ud�2 + Jc

4���12
d �12

ud�2 − ��12
d �11

ud�2 − ��11
d �12

ud�2�

− 2Jc
2�12

d �12
ud cos�4qy� . �9�

In the above, both �ij
d and �ij

ud are functions of only qx and �,
while qy only appears in the final cosine.

Ultimately the RPA approximation we employ for short-
ranged couplings between ladders is uncontrolled. The ap-
proximation can, however, be turned into a controlled expan-
sion if interladder interactions are treated as long ranged.33 In
presenting RPA results for �2D��=0,qx ,qy� we will always
work with a coupling strength, J, just below Jc. If so desired,
it is unproblematic to employ the RPA approximation di-
rectly in the ordered phase.34 It however changes none of our
results on qualitative level.

Once we have the doped and undoped ladder susceptibili-
ties in hand, we will readily be able to determine the value of
the transverse wave vector, qy, at which order arises. We will
find two scenarios, one with order at qy =��� /4, and one
with order at qy =�. One of our main conclusions is that
which scenario is realized depends on the details of the lad-
der susceptibilities.

III. LADDER SUSCEPTIBILITIES: GENERAL
STRUCTURE

A. Susceptibility of the undoped ladders

The low-energy spectral weight of the undoped ladders is
concentrated around qx=qy =�, and the susceptibility dis-
plays a modulation along the y direction by the factor �1
−cos�qy��.35 As long as we restrict our attention to energies
below the two magnon continuum �which dominates the re-
sponse at qy =0�, we can express the susceptibilities of the
undoped ladders in the form

�ab
ud��,qx� = �ud��,qx�� 1 − 1

− 1 1
�

ab
, �10�

where

�ud��,qx� =
Z�qx�

�2 − �2�qx�
. �11�

The magnon dispersion relation, ��qx�, is taken from Ref. 36,

��qx� = J��1.89 cos�qx/2��2 + �0.507 sin�qx/2��2

+ �1.382 sin�qx��2	1/2. �12�

The residue Z�qx� can be inferred from Ref. 37. We use the
following simple, approximate fit, Z�qx�
=3J�0.65 sin2�qx /2�+0.27�.

B. Susceptibility of the doped ladders

In order to infer the susceptibilities of the doped ladders it
is useful to recall the band structure. There are two bands
corresponding to bonding �+� and antibonding �−� fermions,
respectively, c�,�= �c1,��c2,�� /
2. Generically both bands
will cross the chemical potential, leading to four Fermi wave
numbers −kF� and kF� as is illustrated in Fig. 3. The map-
ping to the bonding and antibonding picture implies the fol-
lowing decomposition of the doped susceptibilities �ab

d :

�ab
d ��,qx� = �intra

d ��,qx� + �inter
d ��,qx�� 1 − 1

− 1 1
�

ab
.

�13�

Here �intra
d �� ,qx� and �inter

d �� ,qx� denote the parts of the sus-
ceptibility involving only fermions within the same band and
fermions of both bands, respectively.

The band structure further dictates that low-energy spin
excitations occur at qx�0, �2kF+ , �2kF− in �intra

d and at
qx� �kF+�kF− , �kF+�kF− in �inter

d , respectively. At low
energies, we therefore can write

�intra
d ��,qx� = �0

d��,qx� + �2kF+

d ��,qx� + �2kF−

d ��,qx� ,

�14�

�inter
d ��,qx� = �kF++kF−

d ��,qx� + �kF+−kF−

d ��,qx� . �15�

Here the single-magnon weight �though only quasicoherent
due to the gapless charge excitations of the doped ladder� is
found in �kF++kF−

d . The remaining contributions represent two
excitation continua.

FIG. 3. �Color online� Band structure of Hubbard-type ladders.
� denote bonding and antibonding bands, respectively, and the
chemical potential generically leads to partial filling of both bands.
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IV. ORIGIN OF MAGNETIC INSTABILITY

In terms of the interband and intraband susceptibilities of
the doped ladders the RPA instability condition �Eq. �9��
reads

1 = 4Jc
2�ud��,qx��sin2�2qy��intra

d ��,qx�

+ cos2�2qy��inter
d ��,qx�� . �16�

This form makes it obvious that there are three possible
sources for a magnetic instability: it can be driven by �1� the
interband susceptibility of the doped ladders, �inter

d �� ,qx�; �2�
the intraband susceptibility of the doped ladders, �intra

d �� ,qx�;
or finally, �3� by the susceptibility of the undoped ladder,
�ud�� ,qx�. In the first case the ordering occurs at qy =��

�
4 ,

in the second case at qy mod �=0, �
2 and in the final case at

qy =�.
In this first scenario, the ordering occurs at

Qs
I = ��,� �

�

4
� . �17�

Here the ordering arises from predominance of the two-
particle scattering continuum over the single-particle mag-
non. In this scenario, the specific form of the doped suscep-
tibilities, based upon treating the doped ladders as a
manifestation of the SO�6� Gross-Neveu model, are given in
Appendix.

In the second scenario the ordering occurs at

Qs
II = ���kF+ + kF−�,�� . �18�

Here the ordering arises from the spectral weight associated
with the single-particle magnon on the doped ladder, found
near wave vector D=kF++kF−. �For 1/8-doped LBCO, D
= 3�

4 .� In this scenario this spectral weight overwhelms that
of the two-particle continuum in the doped ladders �as en-
coded in �intra

d �� ,qx��. To then treat this case, we imagine
that the susceptibility of the doped ladder comes solely from
the single-particle magnon as discussed in further detail in
the Appendix.

In the third and final scenario, the ordering occurs at the
commensurate wave vector

Qs
III = ��,�� . �19�

Here the ordering arises because the spectral weight of the
undoped ladder dominates. It is however the least relevant
scenario for describing neutron scattering experiments on the
cuprates and so will not be explored in detail here.

V. MAGNETIC RESPONSE OF COUPLED LADDERS

We now elaborate upon the magnetic response of the
coupled ladders in the two scenarios presented in the previ-
ous section. In particular we will show that either of these
scenarios is compatible with the observed gross features of
the magnetic response of La1.875Ba0.125CuO4 and
La2−xSrxCuO4.

We first consider constant energy slices of the spin re-
sponse as a function of wave vector.31 Choosing the same

energies reported in Ref. 4, we plot the results in Figs. 5 and
6, where the reduced lattice units h and k are defined via4

h =
qx + qy

2�
, k =

qy − qx

2�
. �20�

In both figures we show the spin response resulting for
a single plane of ladders �left figure of each pair� and for
a pair of planes of ladders orientated at 90° to one another
�right figure of each pair�. The second arrangement �pictured
in Fig. 4� corresponds to how stripes order in
La1.875Ba0.125CuO4 and La1.82Sr0.18CuO4, and so is the one
relevant for comparison with experiment. We, however, in-
clude the response of a single plane as it is here that the
magnetic responses of the two ordering scenarios most
sharply distinguish themselves.

In Fig. 5, Scenario I is presented, the case where the mag-
netic order develops perpendicular to the ladder, i.e., at wave
vector �� ,��

�
4 �. At the lowest of energies shown, �

=6 meV, we find for a single plane of ladders, a pair of
incommensurate spin waves dispersing at the incommensu-
rate wave vectors �h ,k�= �1�1 /8, �1 /8�. In the response
for two planes, we then observe a second pair of spin waves,
rotated by 90° relative to the first. The dispersions cones of
the wave vectors are elongated along the diagonal, a conse-
quence of the anisotropy between inter- and intra-ladder-
couplings �Jc and J�. As we increase in energy to �
=36 meV, the spin waves disperse outwards. We see that
spectral weight of the cones is anisotropically distributed,
with more weight being found on the side of the cone nearest
to �� ,��. Thus we see that as we increase in energy, the
spectral weight appears to move away from the incommen-
surate points toward �� ,��. By �=55 meV, the energy cor-
responding to the gap in the undoped ladders, the cones have
begun to overlap. This overlap is enhanced for the response
of a pair of planes, leading to the most intense response
coming from �� ,��. As energy is further increased, we ob-
serve a rotation in the intensity by 45° in the pair plane
response �compare energies �=36 meV and �=80 meV�.
The rotation results from the dominance of the spin response
of the half-filled ladders, which for a single plane form lines
of intensity. With a pair of relatively orientated planes, the
lines cross, leading to the four peaks. As we increase energy
further, the peaks in the two-plane response disperse out-

FIG. 4. �Color online� Stacking of planes of ladders.
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wards while at the same time losing intensity. By �
=160 meV, the spin response has become both compara-
tively broad and weak.

Of the two scenarios, the first scenario most strongly re-
sembles previous spin-wave computations.17–19 In particular
the similarity between Fig. 5 of the text and Fig. 3 of Ref. 18
and Fig. 3 of Ref. 17 is striking. The similarity necessarily
arises as in all cases ordering is taking place perpendicular to
the ladders. In our second scenario, ordering is driven by the
low-lying spin mode in the doped ladders, a feature absent
from the spin-wave models.

In Fig. 6, we plot the magnetic response of the second
scenario where order appears parallel to the ladders. At the
lowest energy shown, �=6 meV, we again find incommen-
surate spin waves, which now appear, for a single plane, at
�h ,k�= �1�1 /8, �1 /8�. The spin waves, in this case, are
much more strongly anisotropic. But we believe this is a
feature of the details of the ladder susceptibilities, not a fun-
damental feature of the model. While the response at �
=6 meV for this ordering pattern is rotated by 90° relative to
where the order develops perpendicular to the ladders, the
response for a pair of planes is qualitatively no different in
the two cases. As we increase in energy, the spin waves
appearing at low energies evolve into the response of a set of
nearly uncoupled doped ladders. Accompanying this evolu-
tion is a separate development of spectral weight at �� ,��.
The presence of inelastic spectral weight of �� ,�� is a con-
sequence of the competition in this scenario between order
developing at qx=� �the location of coherent mode on the
doped ladder� and order developing incommensurately at
qx=3� /4 and 5� /4 �the location of the quasicoherent mode
on the undoped ladder�. Though in this case order is favored

at the incommensurate wave vector, the commensurate order
remains pre-emergent and so appears at finite energy values.
Taken together, these two effects again give the appearance
of a movement of spectral weight toward �� ,��. As we con-
tinue further up in energy, the response of the half-filled lad-
ders again begins to dominate, with a peak in the intensity
near �� ,�� �see �=55 meV in Fig. 6�. The dominance of the
half-filled ladders then continues to higher energies ��
=80 meV and above�, and consequently, the response takes
on the same form as that of Fig. 5.

While our model of coupled ladders finds reasonable ap-
proximates to the observations on LBCO of Ref. 4, it pro-
duces features at higher energies that are typically much
sharper than those actually observed. This however is not
surprising. The RPA approximation we employ will generi-
cally underdamp high-energy stripelike correlations.

As another measure of the response of the two scenarios,
we compute at fixed energy the q-integrated intensity, S���,
of the coupled ladders. This quantity is defined by

S��� =� d2q Im ���,qx,qy� . �21�

We plot the results in Fig. 7 for the two scenarios. We see we
obtain a rough agreement. At low energies there is an in-
crease in intensity corresponding to the development of in-
commensurate long-range order. We also see an enhance-
ment in the intensity at J=50 meV, which corresponds to the
spin gap of the half-filled ladders. This is to be expected as
the excitation spectrum of the half-filled ladder is a single
coherent mode and should have a strong response. For ener-
gies in excess of the spin gap, we then see a gradual decline

(b)(a) (c) (d)

(f)(e) (g) (h)

(i) (j) (l)(k)

FIG. 5. �Color online� Plots of the scattering intensity in ordering Scenario I as a function of h and k �reduced lattice units� for a number
of energies. At each energy the response is presented for both a single ladder array �left-hand figure� and two ladders arrays orientated at 90°
relative to one another �right-hand figure�. The parameters employed here are discussed in Appendix A1.
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in intensity in both the measured and computed responses.
The primary difference between the two scenarios lies in the
total amount of spectral weight found at low energies. But
this difference is not fundamental and rather is a product of
particular choices made to describe the susceptibilities of the
individual ladders in both cases.

VI. DISCUSSION

The observations of Refs. 3 and 4 of the inelastic spin
response in La1.875Ba0.125CuO4 has several basic features.
At zero energy there appear inelastic incommensurate spin
waves at approximately the four wave vectors, Q
= �� ,��1�1 /4�� and Q= ���1�1 /4� ,��. At small but finite
energies �up to 50 meV�, the intensity associated with these
spin waves appears to propagate inwards away from these
incommensurate points toward �� ,��. At higher energies,
the movement of the spectral weight reverses direction,
propagating outward, but with peaks rotated by 45° relative
to the low-energy spin waves.

While both coupled ladder scenarios qualitatively repro-
duce these features, there are quantitative differences be-
tween scenarios. The low-energy spectral features present in
Scenario II �ordering along the ladder� are far more aniso-
tropic than those in Scenario I �ordering perpendicular to the
ladder�. This however is less a fundamental feature of Sce-
nario II and more a consequence of the use of the field theo-
retic treatment of the doped ladders at medium energies. At

such energies, the neglected nonrelativistic band curvature
will moderate anisotropic features. A more fundamental dif-
ference is the manner in which spectral weight moves in-
wards toward �� ,�� as energies are increased to 50 meV. In
Scenario I, this movement is a consequence of expanding
spin-wave cones possessing an unequal distribution of spec-
tral weight. In Scenario II, the weight moves toward �� ,��
due to the spectral features present on the uncoupled doped
ladder together with nascent ordering at �� ,�� �see Scenario
III of Sec. IV�.

Although the primary focus of this work has been on
static stripe order of the kind observed in La1.875Ba0.125CuO4,
one may ask whether our model of coupled ladders might be
applicable more generally to incommensurate magnetic exci-
tations in the cuprates, a question of considerable theoretical
interest.38 At least to some degree it does. In slightly over-
doped LSCO �La1.84Sr0.16CuO4�, nascent incommensurate
long-range order has been reported.39–41 Specifically, neutron
scattering experiments observe a broad peak centered about
11 meV in the scattering intensity at the incommensurate
wave vector �h ,k�= �1�1 /8, �1 /8� �see Fig. 8�. �A similar
phenomena is seen in La1.82Sr0.18CuO4.42� This magnetic re-
sponse can be understood through our model of ladders with
an interladder coupling, Jc, less than its critical ordering
value, Jcrit. The responses for Jc�Jcrit for both scenarios �

and �� are pictured in Fig. 8. For comparison we have plot-
ted the corresponding responses for Jc=Jcrit, where long-
range order is fully developed. There, as � is decreased, the

ω = 6meV ω = 36meV

ω = 55meV ω = 80meV

ω = 120meV ω = 160meV

FIG. 6. �Color online� Plots of the scattering intensity in ordering Scenario II as a function of h and k �reduced lattice units� for a number
of energies. The presentation scheme is the same as Fig. 5. The parameters for the ladders used here are discussed in Appendix A2.
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response diverges at the incommensurate wave vector.
Experimental evidence beyond the spin response in these

compounds provides only limited evidence, allowing one to
distinguish between these two scenarios. In Scenario I ex-
tended to general levels of doping,43 incommensurate wave
vectors of charge and spin density waves are arranged per-
pendicular to the direction of stripes and are related to each
other via

Qch
I = �0, � 4�x�, Qs

I = ��,� � 2�x� , �22�

where x denotes the doping. In contrast, in Scenario II,
stripes are found in the form of coupled two-leg ladders,
independent of doping, gaining in this fashion, magnetic en-
ergy. Here the pattern of incommensuration appears as

Qch
II = �0, �

�

2
�, Qs

II = �� � 2�x,�� . �23�

The behavior of incommensurate spin order at Qsx
=��2�x as a function of doping directly tracks the wave

vector where low-energy quasicoherent modes exist in the
doped ladder.

To distinguish between these two scenarios we must then
focus upon the charge incommensuration. However only the
doping dependence of the magnetic incommensuration has
been carefully studied �see Ref. 20 and references therein�.
The experiments show that the spin incommensuration is
proportional to the doping x for x�1 /8 and then saturates.
On the other hand charge peaks have been observed only for
a narrow range of dopings and only in stripe-stabilized cu-
prates �in La1.5Nd0.4Sr0.1CuO4,44 La1.475Nd0.4Sr0.125CuO4,45

La1.45Nd0.4Sr0.15CuO4,46 and La1.875Ba0.125CuO4 �Ref. 5��.
While the observed charge incommensuration, Qch, changes
as a function of x �and so is supportive of Scenario I�, it does
so weakly, i.e., the change in Qch is governed by 	Qch=c	x
with c�0.5.20 One might then want to conclude that Sce-
nario II remains a possibility, at least for dopings in a narrow
window about x�0.125. The situation is similarly ambigu-
ous for YBa2Cu3O6+x. Here distinct measurements of the
phonon anomaly support alternatively Scenario I �Refs. 8
and 9 and Scenario II.15

Independent of either scenario, our modeling efforts, in
the limited context of models of coupled Hubbard-type lad-
ders, show the value of taking into account the doped region
of the copper-oxide planes. In coupling together the ladders,
we employed antiferromagnetic couplings but were nonethe-
less able to explain the appearance of incommensurate order
and the corresponding �-phase shift in magnetic order. If the
doped regions were instead considered inert, a ferromagnetic
coupling would have to be assumed between adjacent doped
ladders.17–19,47 While it is important to take the doped regions
into account, it is of course no surprise that once done the
�-phase shift is found. It has long been understood that the
�-phase shift is a concomitant feature of holes localized into
stripelike regions.48–51

While we have focused on magnetism here, models of
coupled ladders have promising superconducting
properties.52 It has already been established that a model of a
uniform array of coupled half-filled ladders possesses narrow
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FIG. 7. �Color online� Integrated intensity, S���, of the coupled
ladder system in the two ordering scenarios. For comparison, we
plot these results against Ref. 4. The parameters are the same as for
Figs. 5 and 6.
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FIG. 8. �Color online� The intensity of the spin response at the incommensurate ordering wave vector, Q, for the two ordering scenarios.
We show the response for both subcritical and critical values of the interladder coupling, Jc. We compare this with the maximal intensity in
La1.84Sr0.16CuO4 for T
Tc measured in Ref. 40. For ordering perpendicular to the ladders the parameters are the same as those found in
Figs. 5 and 7. For the second scenario, as explained in Appendix A2, the parameters used differed from those employed in Figs. 6 and 7.
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arcs of quasiparticles, which have an instability toward
d-wave superconductivity.30 Ultimately this is a consequence
of the presence of nascent d-wave superconducting order on
the component ladders.27,28 However these arcs are highly
anisotropic with an alignment parallel to the ladders. Can
then the present model produce arcs aligned at 45°? If so it
would provide an important complement to initial theoretical
efforts22–25 on how to understand the presence of nodal qua-
siparticles seen in angle-resolved photoemission
experiments26 in the context of a stripe-based picture.
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APPENDIX: SUSCEPTIBILITIES
OF THE DOPED LADDERS

We extract the susceptibilities of doped ladder from a field
theoretic reduction of the ladders �Ref. 53�. The correspond-
ing field theory takes the form of the SO�6� Gross-Neveu
model supplemented by a U�1� Luttinger liquid describing
the charge sector. Though such a description captures low-
energy features of the system, it leaves us with ambiguities
concerning the amplitudes of the correlation functions. It is
these ambiguities which give rise to the possibility of differ-
ent ordering scenarios described in the text.

The field theory predicts the following general form for
the susceptibilities:

�0
d��,q� =

3

8
A11J1��,q� ,

�2kF+

d ��,q� =
3

8
A12�J2��,q + 2KF+� + J2��,q − 2KF+�� ,

�2kF−

d ��,q� =
3

8
A12�J2��,q + 2KF−� + J2��,q − 2KF−�� ,

�kF+−kF−

d ��,q� =
3

8
A31�J1��,q + KF− − KF+�

+ J1��,q − KF− + KF+�� ,

�kF++kF−

d ��,q� =
3

8
A32�J3��,q + KF− + KF+�

+ J3��,q − KF− − KF+�� . �A1�

In these expressions Aij are amplitudes with dimensionality
of momentum that are determined by short-distance physics.
On the other hand Ji’s are functions dependent on long-
distance physics that arise from the form of the matrix ele-

ments of the spin operators in the SO�6� Gross-Neveu model.
Different choice of the amplitudes, Aij, determine what or-
dering scenario is realized.

The imaginary part of J1 takes the form

Im J1��,q� =
8vFq̃2

��2 − q̃2�3/2
��� − 
q̃2 + 4m2�
��2 − q̃2 − 4m2�1/2

� exp��
0


 dx

x

Gc�x�
s�x� �1 − c�x�cos��12x

�
��� ,

�A2�

where �12 is given by

�12 = cosh−1��2 − q̃2 − 2m2

2m2 � , �A3�

and q̃=vFq, where vF is the Fermi velocity of electrons in
either the bonding or antibonding bands. Here s�x� /c�x�
�sinh�x� /cosh�x� and

Gc�x� =
ex/2 − 1

s�x�
.

The imaginary parts of J2 and J3 can be expressed more
compactly as integrals over hypergeometric functions,

J2��,q� =
vF

m2�
−





d�
s2���

�c����4−K/2F�1 −
K

4
,1

−
K

4
,1,

�� + i0�2 − q̃2

4m2c2��� �
�exp��

0


 dx

x

Gs�x�
s�x� �1 − c�x�cos�2�x

�
��� ,

J3��,q� =
vF

2g2m2exp�− 2�
0


 dx

x

Gv�x�
s�x�

s2� x

4��
�F�1 −

K

4
,1 −

K

4
,1,

�� + i0�2 − q̃2

2m2 �
+

2K/4vF

�m2 �
−





d�
1

�c����4−K/2� s�2��2

2c�2��2 +
s���2

c�2��2�
�F�1 −

K

4
,1 −

K

4
,1,

�� + i0�2 − q̃2

4m2c2��� �
�exp��

0


 dx

x

Gv�x�
s�x� �1 − c�x�cos�2�x

�
��� ,

�A4�

where

Gv�x� =
2

1 − e−2x �e−2x�1 − ex/2� − e−5x/2�1 − e2x�� .

Here K is the Luttinger parameter governing the gapless total
charge mode of the doped ladder, and g is a constant given
by
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g2 =
2
���7/4�

3��5/4�
.

To evaluate the real parts of Ja �a=1,2 ,3� we Kramers-
Kronig transform the above expressions for Im J,

Re J��,q� =
1

�
�

−D

D

d��
Im J���,q�

� − ��
. �A5�

We equip the transformation with a cutoff, D�vF /a, to re-
flect the fact the imaginary parts of J2 and J3 are only accu-
rate representations of the low-energy sector of the ladders.
To determine the real parts of J2/3 we perform the transfor-
mation over a frequency interval roughly corresponding to
this sector. Our results, however, are insensitive to the exact
value of D.

1. Scenario I: Ordering perpendicular to the ladders

To be able to produce the analysis of ordering perpendicu-
lar to the ladders �Scenario I—Figs. 5, 7, and 8� we had to fix
the parameters vFAij /m2 and determine the value of spin gap
m. In Ref. 53, we did this through a comparison with an RPA
analysis of a Hubbard ladder with an onsite U repulsion. The
value of the spin gap m is related to the bandwidth, t, the
Hubbard interaction, U, and the Fermi velocity vF. For t
�U we chose t=4 eV and for vF=350 meV a �where a is
the lattice spacing�. vF is not readily available as its �strong�
renormalization due to interactions is a two-loop effect. But
the value we employed is commensurate with what is mea-
sured in the cuprates.54 As discussed in Ref. 53, knowledge
of t alone is enough to fix the value of the gap, m=26 meV,
using a field theory analysis for doped ladders55 together
with the values of the gap on the ladder as determined from
density matrix renormalization group �DMRG� at
half-filling.56,57 From this same field theory analysis, the Lut-
tinger parameter can be determined as K=0.945. In Figs. 5
and 7 we couple the ladders together with a strength just
below that of the critical interladder coupling as determined
from our RPA analysis—here Jcrit=16.05 meV. We choose
the value of J on the undoped ladders to be 100 meV so as to
match experimental observations of the location of the neck
of the hourglass describing the evolution of excitations in
La1.875Ba0.125CuO4.4 Furthermore to partially mimic the
broadening seen in experiment, we broadened the spectral
function of the undoped ladders by assuming a lifetime of
0.1J.

The constants, Aij, that appear in Eq. �A1� are not deter-
mined by the field theory treatment itself but must be ac-
cessed through separate considerations. In Ref. 53 we,
through a comparison with a RPA analysis of a Hubbard
ladder with an onsite U repulsion, were able to provide ten-
tative values for the Aij’s.

2. Scenario II: Ordering parallel to the ladders

Since the amplitudes Aij are determined by processes with
energies of the order of the bandwidth, we have a liberty of
choice. For Scenario I we have chosen the high-energy phys-
ics as in a simple doped Hubbard ladder with a pointlike
interaction and U� t. One can imagine that some other lat-
tice realization generates a set of amplitudes such that the
spectral weight associated with the quasicoherent spin exci-
tation dominates. To develop this scenario, we thus focus on
this excitation to the exclusion of contributions coming from
two excitation scattering continua. Specifically we set A11
=A12=A31=0, leaving only A32 finite, and take J3 to equal

J3��,k� =
vF

2g2m2exp�− 2�
0


 dx

x

Gv�x�
sinh�x�

sinh2� x

4
��

�F�1 −
K

4
,1 −

K

4
,1,

�2 − k̃2

2m2 � . �A6�

As such, J3 now represents a coherent mode broadened by
the presence of gapless charge excitations.

For this scenario, in order to produce the spin response at
constant energy in Fig. 6 and the integrated intensity in Fig.
7, we must choose the ratio of v f /m to be sufficiently large in
order to guarantee Scenario II prevails over Scenario III. To
ensure this we chose v f =250 meV a, and the lattice band-
width to be t=1000 meV �and thus via Refs. 55–57, m
=0.0065t=6.5 meV�. Both the parameters used for the un-
doped ladder and the Luttinger parameter describing charge
excitations on the doped ladders were the same as in Sce-
nario I �Appendix A1�.

In order to produce the results displayed in the left-hand
side of Fig. 8 �discussing the strength of the inelastic signal
in La1.86Sr0.14CuO4 at the incommensurate wave vector�, we
took instead v f =360 meV a and t=3000 meV. This in turn
moved the gap scale on the doped ladders to m=21 meV,
high enough so that it did not interfere with the low-energy
signal marking nascent incommensurate order.
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